
CIVIL-463.12

CAPACITE DES ROUTES EN SECTION

Base: Chapitre 8 du TGC 25

Relation Offre et Demande

- ▶ Adéquation Offre Demande en transport
 - Capacité

Le trafic journalier moyen TJM

- ► Correspond au ¹/₃₆₅ème du trafic annuel
- ▶ Plusieurs types de TJM
 - ► TJM₂₄ trafic journalier moyen annuel
 - \rightarrow TJM_O jours ouvrables
 - \rightarrow TJM₁₄ entre 7 et 21 heures
 - 85 à 90 % du *TJM*₂₄
- **▶** Unité
 - >> Véhicules / jour
 - **▶▶** Dans les 2 directions !!

ADT Average Daily TrafficDTV Durchschnittlicher Tagesverkehr

Demande - Trafic déterminant TD

$$TD = TJM \cdot C_1 \cdot C_2$$

(véhicules par heure et par direction)

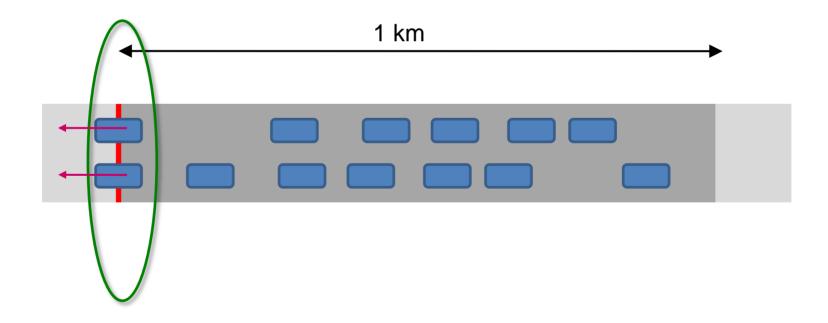
TD trafic déterminant [véhicules/heure/direction]

TJM trafic journalier moyen [véhicules/jour]

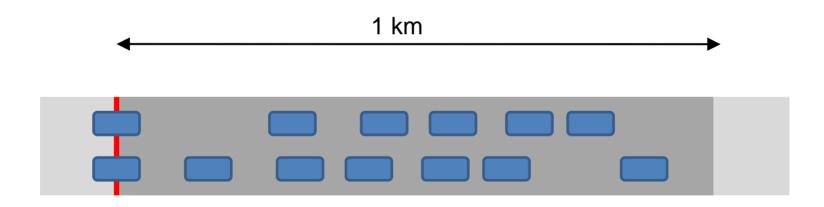
 C_1 rapport entre le trafic de la $30^{\rm e}$ heure et le TJM, avec les valeurs usuelles suivantes :

– en localité: 8 à 10 %

- hors-localités: 10 à 15 %


- trafic de loisirs : 15 à 20 %

 C_2 répartition directionnelle du trafic, variant généralement entre 50 et 70 %


- ▶ Débit Q
 - >> volume de circulation en un point
 - >> véhicules/heure/sens

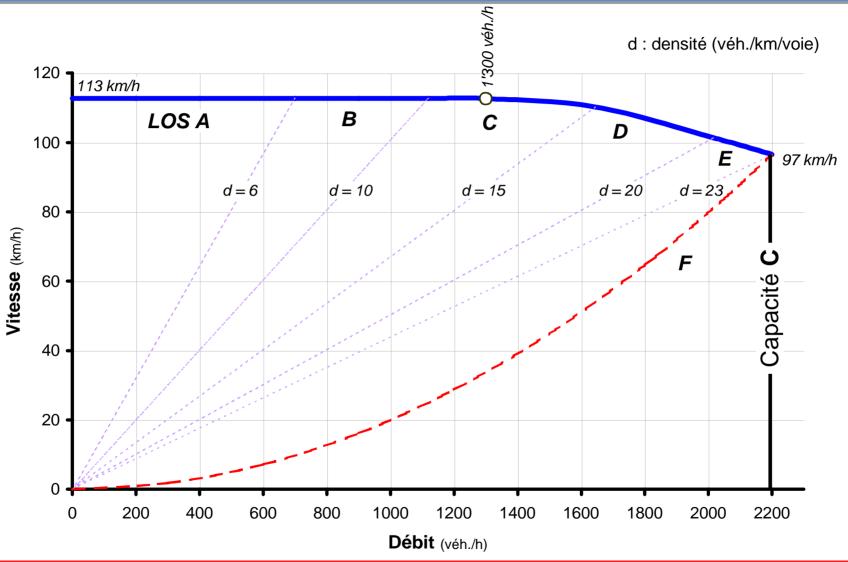
- ▶ Vitesse
 - >> moyenne arithmétique en un point
 - → km/h

- ▶ Densité de circulation
 - >> nombre de véhicules par tronçon
 - >> véhicules/km/voie

- ▶ Débit Q
 - >> volume de circulation en un point véh./h/sens
- ▶ Vitesse V
 - → moyenne arithmétique en un point km/h
- ▶ Densité de circulation
 D
 - → nombre de véhicules par tronçon véh./km/voie
- ▶ Ratio de débit R
 - → rapport entre Q et la capacité C

Relations entre variables

$$\mathbf{D} = \frac{Q}{N \cdot V}$$


D densité de circulation (véh. / km / voie)

Q débit (véh. / h / direction)

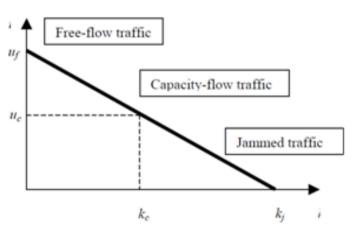
N nombre de voies par direction (voies / direction)

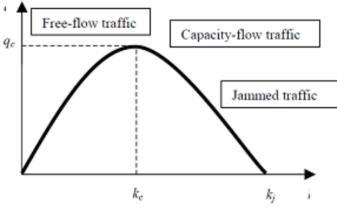
V vitesse de circulation (km / h)

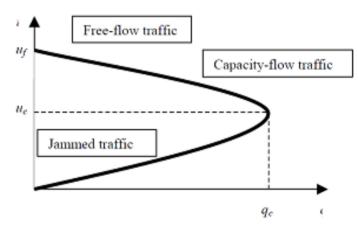
Relation Vitesse V - Débit Q

Relations de base (Greenshields)

▶ Trafic libre


Free-flow traffic


▶ Capacité


Capacity-flow traffic

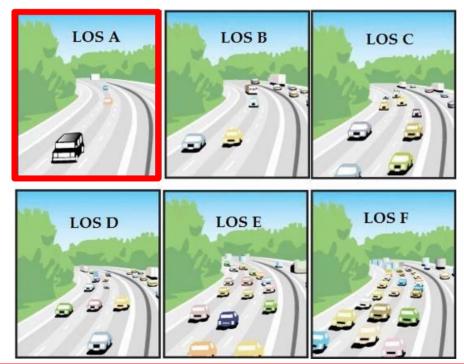
▶ Saturation

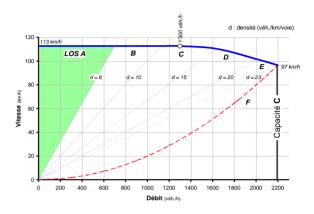
Jammed traffic

Relation vitesse u - densité k

$$\mathbf{u} = \alpha \mathbf{k} + \beta$$

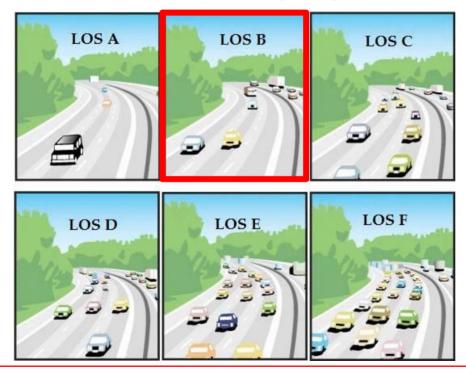
Relation densité k - débit q

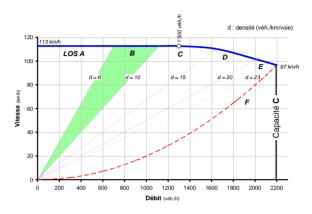

Relation débit q - vitesse u


Notion de niveau de service

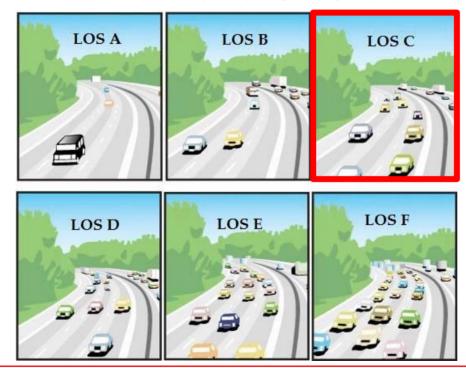
- ▶ L.O.S Level of Service
- Highway Capacity Manual
 - >> Document de base développé par le TRB (USA)
 - >> Adapté aux conditions suisses
- ▶ Capacité
 - >> Débit maximal possible
 - >> Situation fortement instable et confort de circulation médiocre
 - >> Autoroute, conditions idéales 2'200 véhicules/h/voie

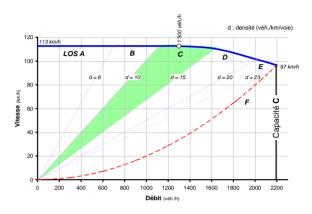
Niveau de service LOS A


- **▶** Écoulement libre
- **▶** Vitesse libre
- ▶ Densité maximale : 6 véh./km/voie

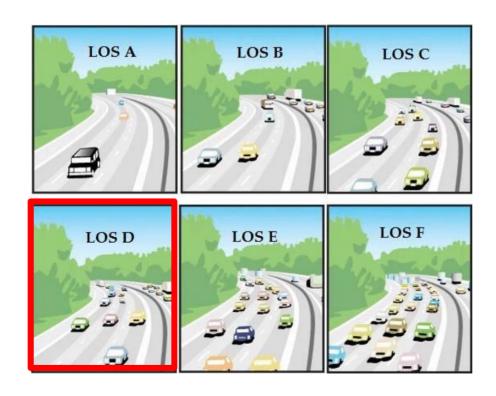


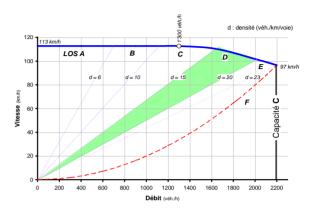
Niveau de service LOS B


- ▶ Légère gêne
- ▶ Stabilité
- ▶ Densité maximale : 10 véh./km/voie

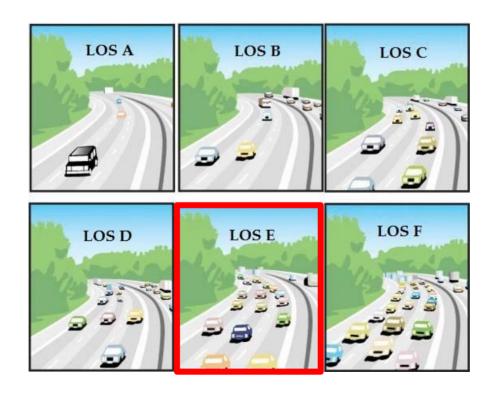


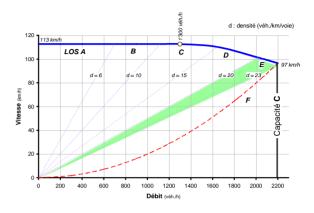
Niveau de service LOS C


- **▶** Écoulement stable
- **▶** Contraintes
- ▶ Densité maximale : 15 véh./km/voie

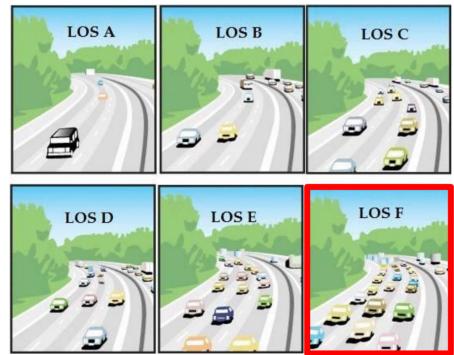


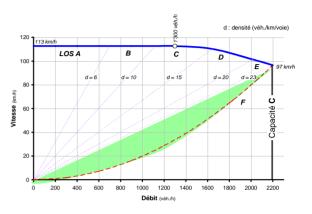
Niveau de service LOS D


- ▶ Proche de l'écoulement instable
- ▶ Densité maximale : 20 véh./km/voie



Niveau de service LOS E


- ▶ Capacité atteinte
- **▶** Densité maximale ≅ 30 véh./km/voie



Niveau de service LOS F

- ▶ Capacité dépassée
- **▶** Embouteillage
- ▶ Niveau de service inacceptable

La capacité C

Définition

- >> Débit maximal d'une infrastructure routière LOS E
- >> Limite des possibilités d'écoulement

Conditions idéales

- >> Chaussée horizontale avec voies de 3,65 m
- >> Distance de visibilité suffisante
- ▶ Dégagements latéraux minimum de 1,80 m
- >> Trafic d'habitués avec moins de 3 % de P.L.
- >> Pas d'accès latéraux et de nœuds à proximité

Capacité réelle

- Conditions réelles Cr
- ▶ Prise en compte de facteurs correctifs
 - >> Largeur des voies
 - >> Possibilités de dépassement
 - >> Vitesse de circulation
 - >> Distance des obstacles latéraux
 - >> Proportion de poids lourds
 - >> Rampes et pentes : déclivité et longueur
 - **>>** Environnement

Principes des méthodes d'analyse

- Capacité idéale
- **▶** Ratio limite
 - >> Selon le niveau de service analysé
- ▶ Nombre de voies par sens
- Multiplication par des facteurs correctifs

Deux catégories de routes

- ▶ RP / RL
 - >> Routes principales et de liaison
 - >> Pas de séparation physique des sens de circulation
- **▶** RGD
 - **▶** Routes à grand débit **≡** Autoroutes
 - >> Séparation physique des sens de circulation
- **▶** Autres routes
 - >> Peu de nécessité d'analyse

RP/RL - Débit de circulation corresp.

▶ Principe

$$\mathbf{Q}_{i} = N \cdot C \cdot R_{i} \cdot \prod_{j=1}^{j=4} f_{j}$$

 Q_i débit de circulation correspondant pour un niveau de service i donné (véh. / h / direction)

La capacité réelle C_i vaut le débit de circulation Q_E correspondant au niveau de service E

- N nombre de voies dans la direction analysée (voies / direction)
- capacité pour une voie selon le type de route (véh. / h / voie)
- R_i ratio limite pour un niveau de service i donné (-)
- f_j facteurs correctifs f_1 à f_4 (-) C = 1'400 véh/h/voie

RP/RL - Valeur de base

Topographie	Visibilité insuffisante pour dépasser (% du tronçon)	Capacité C (véh/h/voie)			Ratio limite $oldsymbol{R} (Q_{max}/C)$	•	
	(70 dd trongon)		Α	В	С	D	E
Plaine	0		0.15	0.27	0.43	0.80	1.00
	20		0.12	0.24	0.39	0.78	1.00
	40		0.09	0.21	0.36	0.75	1.00
	60		0.07	0.19	0.34	0.74	1.00
	80		0.05	0.17	0.33	0.73	1.00
	100		0.04	0.16	0.32	0.71	1.00
Vallonné	0		0.15	0.26	0.42	0.78	0.97
	20		0.10	0.23	0.39	0.71	0.94
	40	1'400	0.07	0.19	0.35	0.65	0.92
	60	1 400	0.05	0.17	0.32	0.60	0.91
	80		0.04	0.15	0.30	0.58	0.90
	100		0.03	0.13	0.28	0.54	0.90
Montagne	0		0.14	0.25	0.39	0.73	0.91
	20		0.09	0.20	0.33	0.63	0.87
	40		0.07	0.16	0.28	0.56	0.84
	60		0.04	0.13	0.23	0.50	0.82
	80		0.02	0.12	0.20	0.46	0.80
	100		0.01	0.10	0.16	0.41	0.78

▶ Largeur des voies de circulation

Largeur des voies de circulation (m)	≥ 3,65	3,35	3,05	2,75
Facteur f_1	1.00	0.93	0.84	0.70

▶ Obstacles latéraux

Distance des obstacles latéraux (m) (par rapport au bord de la voie)	≥ 1,80	1,20	0,60	0,00
Facteur \boldsymbol{f}_2	1.00	0.92	0.81	0.70

▶ Distribution du trafic

Distribution du trafic par direction	50 / 50	60 / 40	70 / 30	80 / 20	90 / 10	100 / 0
Coefficient de répartition	0.50	0.60	0.70	0.80	0.90	1.00
Facteur f_3 pour routes à 2 voies	1.00	1.13	1.25	1.33	1.35	1.43

▶ Influence des déclivités

Proportion	Longueur		[Déclivité de	la rampe ((%)	
des PL (%)	(km)	0 à 1	2	3	4	5	6
0	_	1	1	1	1	1	1
	0.5		0.90	0.80	0.75	0.70	0.65
5	2.0	0.95	0.80	0.75	0.65	0.60	0.55
	5.0		0.75	0.70	0.60	0.55	0.50
	0.5		0.85	0.75	0.70	0.65	0.65
10	2.0	0.9	0.70	0.60	0.55	0.50	0.45
	5.0		0.60	0.50	0.45	0.40	0.35
	0.5		0.80	0.70	0.65	0.65	0.65
15	2.0	0.85	0.65	0.55	0.45	0.40	0.35
	5.0		0.55	0.45	0.35	0.30	0.25
	0.5		0.75	0.70	0.65	0.65	0.65
20	2.0	0.80	0.60	0.50	0.40	0.35	0.30
	5.0		0.50	0.40	0.30	0.25	0.20
		0 à 5	6				

Déclivité de la pente (%)

Exemple numérique

▶ Route cantonale

- **→ 2 x 1 voie de 3,50 m**
- >> Zone vallonnée
- >> Dépassement possible sur 70 % du tronçon
- >> Obstacles latéraux à 1,0 m du bord
- **▶ TD = 500 v/h/sens dont 10 % de PL**
- ▶ Répartition directionnelle à HPS : 60 / 40
- ▶ Rampe déterminante de 1 km à 3 %
- >> Niveau de service désiré : LOS D

Débit de circulation corresp.

$$\mathbf{Q}_{i} = N \cdot C \cdot R_{i} \cdot \prod_{j=1}^{j=4} f_{j}$$

 Q_i débit de circulation correspondant pour un niveau de service i donné (véh. / h / direction)

La capacité réelle C_i vaut le débit de circulation Q_E correspondant au niveau de service E

- N nombre de voies dans la direction analysée (voies / direction) 25
- capacité pour une voie selon le type de route (véh. / h / voie)
- R_i ratio limite pour un niveau de service i donné (-)
- f_j facteurs correctifs f_1 à f_4 (-) C = 1'400 véh/h/voie

Valeur de base

	Topographie	Visibilité insuffisante pour	Capacité <i>C</i>			Ratio limite <i>R</i>	:	
► C = 1'400 v/h/	voie	dépasser (% du tronçon)	(véh/h/voie)	(Q_{max}/C)				
		(70 dd dollgoll)		Α	В	С	D	E
	Plaine	0		0.15	0.27	0.43	0.80	1.00
		20		0.12	0.24	0.39	0.78	1.00
		40		0.09	0.21	0.36	0.75	1.00
		60		0.07	0.19	0.34	0.74	1.00
		80		0.05	0.17	0.33	0.73	1.00
		100		0.04	0.16	0.32	0.71	1.00
	Vallonné	0		0.15	0.26	0.42	0.78	0.97
		20		0.10	0.23	0.39	0.71	0.94
		40	1'400	0.07	0.19	0.35	0.65	0.92
		60	1 400	0.05	0.17	0.32	0.60	0.91
		80		0.04	0.15	0.30	0.58	0.90
		100		0.03	0.13	0.28	0.54	0.90
•	Montagne	0		0.14	0.25	0.39	0.73	0.91
	_	20		0.09	0.20	0.33	0.63	0.87
		40		0.07	0.16	0.28	0.56	0.84
		60		0.04	0.13	0.23	0.50	0.82
		80		0.02	0.12	0.20	0.46	0.80
		100		0.01	0.10	0.16	0.41	0.78

Valeur de base

▶ Impossible de dépasser sur 30 % du tronçon

▶ Valloné

 $R_{\rm D} = 0.68$

Topographie	Visibilité insuffisante pour dépasser (% du tronçon)	Capacité C (véh/h/voie)			Ratio limite $m{R}$ $(m{Q}_{max}/m{C})$	•	
	(76 da tronçon)		Α	В	С	D	E
Plaine	0		0.15	0.27	0.43	0.80	1.00
	20		0.12	0.24	0.39	0.78	1.00
	40		0.09	0.21	0.36	0.75	1.00
	60		0.07	0.19	0.34	0.74	1.00
	80		0.05	0.17	0.33	0.73	1.00
	100		0.04	0.16	0.32	0.71	1.00
Vallonné	0		0.15	0.26	0.42	0.78	0.97
	20		0.10	0.23	0.39	0.71	0.94
	40	1'400	0.07	0.19	0.35	0.65	0.92
	60	1 400	0.05	0.17	0.32	0.60	0.91
	80		0.04	0.15	0.30	0.58	0.90
	100		0.03	0.13	0.28	0.54	0.90
Montagne	0		0.14	0.25	0.39	0.73	0.91
	20		0.09	0.20	0.33	0.63	0.87
	40		0.07	0.16	0.28	0.56	0.84
	60		0.04	0.13	0.23	0.50	0.82
	80		0.02	0.12	0.20	0.46	0.80
	100		0.01	0.10	0.16	0.41	0.78

► Largeur des voies de circulation de 3,50 m

$$f_1 = 0.97$$

Largeur des voies de circulation (m)	≥ 3,65	3,35	3,05	2,75
Facteur f_1	1.00	0.93	0.84	0.70

Conception et réalisation des voies

Obstacles latéraux à 1 m du bord

$$f_2 = 0.88$$

Distance des obstacles latéraux (m) (par rapport au bord de la voie)	≥ 1,80	1,20	0,60	0,00
Facteur f_2	1.00	0.92	0.81	0.70

Conception et réalisation des voies

▶ Distribution du trafic 60 / 40

$$\rightarrow$$
 f₃ = 1,13

Distribution du trafic par direction	50 / 50	60 / 40	70 / 30	80 / 20	90 / 10	100 / 0
Coefficient de répartition C ₆	0.50	0.60	0.70	0.80	0.90	1.00
Facteur f_3 pour routes à 2 voies	1.00	1.13	1.25	1.33	1.35	1.43

Conception et réalisation des voies

▶ Influence des déclivités 10 % de PL, 1 km de rampe à 3 %

$$f_4 = 0.70$$

Proportion	Longueur		Γ	Déclivité de	la rampe	(%)			
des PL (%)	(km)	0 à 1	2	3	4	5	6		
0	_	1	1	1	1	1	1		
	0.5		0.90	0.80	0.75	0.70	0.65		
5	2.0	0.95	0.80	0.75	0.65	0.60	0.55		
	5.0		0.75	0.70	0.60	0.55	0.50		
	0.5		0.85	0.75	0.70	0.65	0.65		
10	2.0	0.9	0.70	0.60	0.55	0.50	0.45		
	5.0		0.60	0.50	0.45	0.40	0.35		
	0.5		0.80	0.70	0.65	0.65	0.65		
15	2.0	0.85	0.65	0.55	0.45	0.40	0.35		
	5.0		0.55	0.45	0.35	0.30	0.25		
	0.5		0.75	0.70	0.65	0.65	0.65		
20	2.0	0.80	0.60	0.50	0.40	0.35	0.30		
	5.0		0.50	0.40	0.30	0.25	0.20		
		0 à 5	6						
			Déclivité de la pente (%)						

Déclivité de la pente (%)


Résultat

$$Q_i = N \cdot C \cdot R_i \cdot \prod_{j=1}^{j=4} f_j$$

- $\mathbf{Q_D} = 1 \cdot 1'400 \cdot 0,68 \cdot 0,97 \cdot 0,88 \cdot 1,13 \cdot 0,70$
- ▶ **Q**_D = 643 v/h/sens
- ► TD = 500 v/h/sens → OK!

Valeur de base

Topographie	Visibilité insuffisante pour dépasser	Capacité C (véh/h/voie)	Ratio limite $m{R} \ (m{Q}_{max}/C)$				
	(% du tronçon)		Α	В	С	D	E
Plaine	0		0.15	0.27	0.43	0.80	1.00
	20		0.12	0.24	0.39	0.78	1.00
	40		0.09	0.21	0.36	0.75	1.00
	60		0.07	0.19	0.34	0.74	1.00
	80		0.05	0.17	0.33	0.73	1.00
	100		0.04	0.16	0.32	0.71	1.00
Vallonné	0		0.15	0.26	0.42	0.78	0.97
	20		0.10	0.23	0.39	0.71	0.94
	40	1'400	0.07	0.19	0.35	0.65	0.92
	60	1 400	0.05	0.17	0.32	0.60	0.91
	80		0.04	0.15	0.30	0.58	0.90
	100		0.03	0.13	0.28	0.54	0.90
Montagne	0		0.14	0.25	0.39	0.73	0.91
	20		0.09	0.20	0.33	0.63	0.87
	40		0.07	0.16	0.28	0.56	0.84
	60		0.04	0.13	0.23	0.50	0.82
	80		0.02	0.12	0.20	0.46	0.80
	100		0.01	0.10	0.16	0.41	0.78

Résultat

$$\mathbf{Q}_{i} = N \cdot C \cdot R_{i} \cdot \prod_{j=1}^{j=4} f_{j}$$

- \triangleright Q_D = 643 v/h/sens
- $\mathbf{Q_c} = 643 \cdot 0.37 / 0.68 = 350 \text{ v/h/sens}$
- ➤ TD = 500 v/h/sens
- **▶ LOS D**

Remarques sur la méthode

Le calcul dans le cas des routes à 3 voies avec circulation dans les deux sens s'effectue de façon analogue à celui des routes à 2 voies, la troisième voie permettant d'éviter le facteur d'influence des déclivités f_4 et améliorant éventuellement le ratio limite lié à la possibilité de dépassement

Il en va de même pour les routes avec voies lentes dans les rampes

Sur les chaussées en rampe avec plus d'une voie pour le sens montant, 80 % des poids lourds sont concentrés sur la voie de droite

Les valeurs ci-dessus ne sont valables que pour des tronçons de route suffisamment éloignés de carrefours importants

RGD - Débit de circulation corresp.

▶ Principe

$$\boldsymbol{Q_i} = N \cdot C \cdot R_i \cdot \prod_{j=5}^{j=8} f_j$$

 Q_i débit de circulation correspondant pour un niveau de service i donné (véh. / h / direction)

La capacité réelle C_i vaut le débit de circulation Q_E correspondant au niveau de service E

N nombre de voies dans la direction analysée (voies / direction)

capacité pour une voie selon le type de route (véh. / h / voie)

 R_i ratio limite pour un niveau de service i donné (-)

 f_i facteurs correctifs f_5 à f_8 (-)

C = 2'000 véh/h/voie

2 x 2 voies

C = 2'100 véh/h/voie

2 x 3 voies ou plus

RGD - Valeur de base

Nombre de voies	Vitesse en régime libre	Capacité <i>c</i> (véh./h/	Ratio limite <i>R</i> (Q _{max} / C)				
	(km/h)	voie)	Α	В	С	D	Е
			D _A = 6	D _B = 10	D _C = 15	D _D = 20	D _E = 25
Ø	120	2'000	0.318	0.509	0.747	0.916	1.000
2 x 2 voies	110		0.295	0.473	0.707	0.887	
	100		0.272	0.436	0.655	0.829	
	90		0.250	0.400	0.600	0.800	
2 x 3 voies ou plus	120	2'100	0.304	0.487	0.715	0.876	
	110		0.283	0.452	0.673	0.849	1.000
	100		0.261	0.417	0.626	0.793	1.000
0	90		0.239	0.383	0.574	0.765	

▶ Largeur des voies de circulation

Largeur des voies de circulation (m)	≥ 3,65	3,35	3,05
Facteur f_5	1.00	0.95	0.90

▶ Obstacles latéraux

Distance des obstacles latéra de la voie)	≥ 1,80	1,20	0,60	0,00	
Footour 6	obstacles sur 1 côté	1.00	0.99	0.97	0.92
Facteur f_6	obstacles sur 2 côtés	1.00	0.98	0.95	0.86

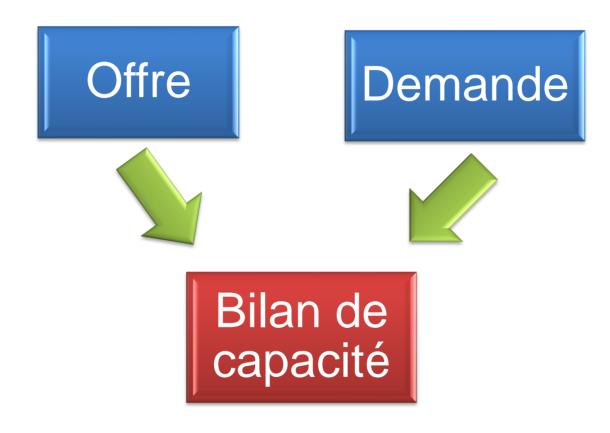
▶ Influence des déclivités / Rampes

Damas (0/)	Longueur	Proportion de PL (%)					
Rampe (%)	(km)	5	10	15	20	25	
< 2	Toutes	0.98	0.95	0.93	0.91	0.89	
	0 à 1.2	0.98	0.95	0.93	0.91	0.89	
2	1.8	0.93	0.91	0.93	0.87	0.84	
	≥ 2.4	0.91	0.87	0.87	0.83	0.80	
	0 à 0.4	0.98	0.95	0.93	0.91	0.89	
3	0.8	0.90	0.87	0.84	0.83	0.84	
3	2.0	0.82	0.77	0.71	0.69	0.73	
	≥ 2.4	0.82	0.74	0.69	0.67	0.67	
	0 à 0.4	0.98	0.95	0.93	0.91	0.89	
4	0.8	0.82	0.77	0.71	0.67	0.67	
4	1.2	0.78	0.70	0.64	0.61	0.59	
	≥ 1.6	0.75	0.67	0.62	0.56	0.53	
	0 à 0.4	0.98	0.95	0.93	0.91	0.89	
5	0.6	0.83	0.77	0.71	0.69	0.70	
5	1.2	0.72	0.63	0.56	0.50	0.48	
	≥ 1.6	0.71	0.63	0.55	0.50	0.47	
6	0 à 0.4	0.91	0.87	0.82	0.83	0.80	
	0.6	0.76	0.68	0.63	0.57	0.55	
	≥ 0.8	0.69	0.58	0.49	0.43	0.42	

de circulation - Automne 2024

▶ Influence des déclivités / Pentes

Pente (%)	Longueur	Proportion de PL (%)					
	(km)	5	10	15	20		
< 4	toutes	0.98	0.95	0.93	0.91		
4	≤ 6.5	0.98	0.95	0.93	0.91		
	> 6.5	0.95	0.91	0.87	0.91		
5	≤ 6 .5	0.98	0.95	0.93	0.91		
5	> 6.5	0.82	0.77	0.69	0.71		
≥ 6	≤ 6.5	0.98	0.95	0.93	0.91		
	> 6.5	0.75	0.67	0.60	0.59		

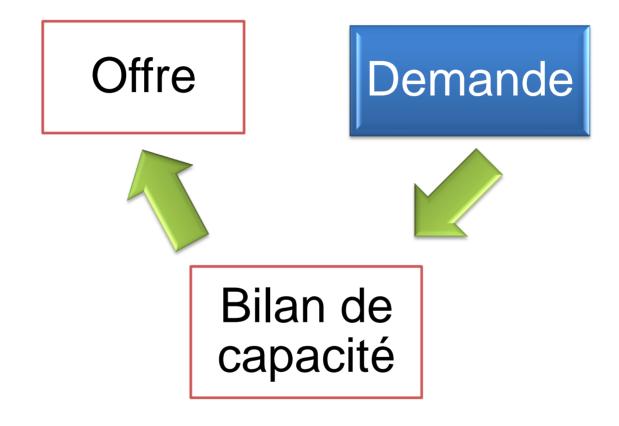

▶ Collectif des conducteurs

- \rightarrow trafic pendulaire $f_8 = 1.0$
- \rightarrow trafic d'habitués $f_8 = 1.0$
- \rightarrow trafic touristique $f_8 = 0.75 \text{ à } 0.99$

Établissement du bilan de capacité

- Comparaison entre
 - Demande routière vs Offre routière
 - >> Seule cette comparaison permet de tirer des conclusions !
- ▶ 3 procédures envisageables
 - >> Procédure d'après la demande
 - >> Procédure d'après l'offre
 - Analyse des performances

Bilan de capacité

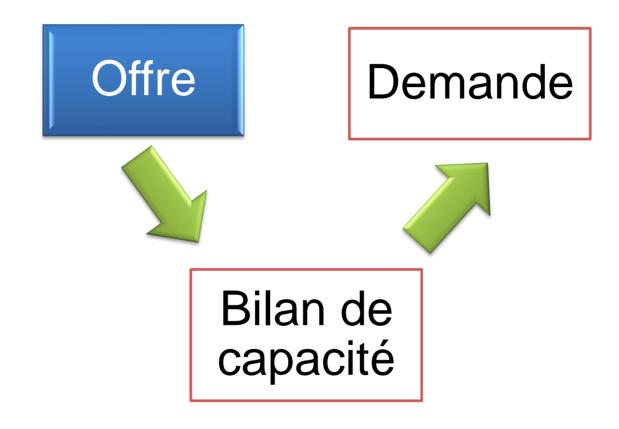


Procédure d'après la demande

▶ Demande connue

- >> Dimensions de l'infrastructure routière
- >> Réalisation d'une nouvelle route
- >> Aménagement d'une route existante

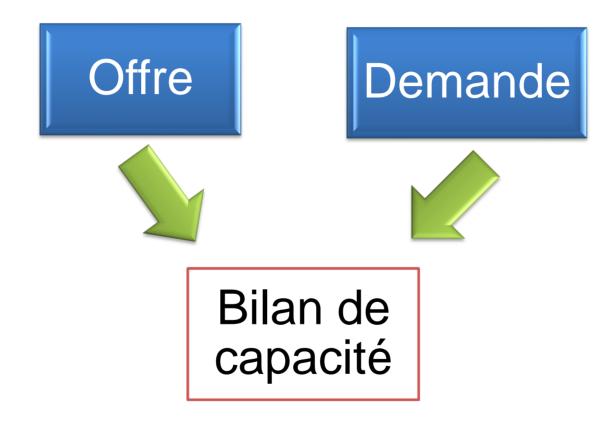
Procédure d'après la demande



Procédure d'après l'offre

▶ Offre connue

- Volumes de circulation possibles pour un niveau de service donnée
- >> Reports de trafic sur une infrastructure existante


Procédure d'après l'offre

Analyse des performances

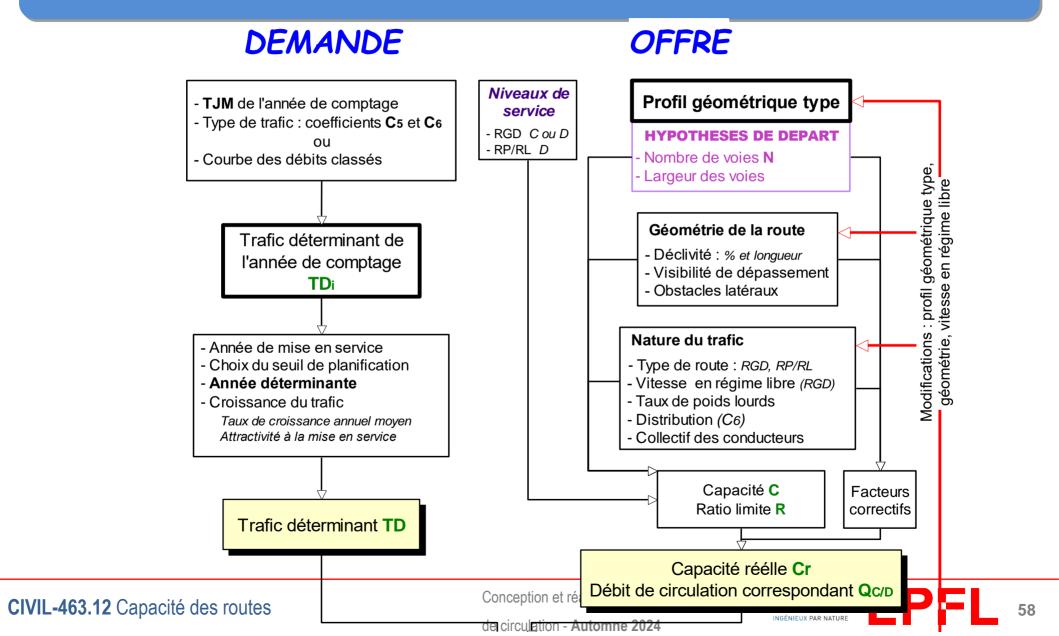
- ▶ Demande et offre connues
 - >> Niveaux de service correspondants
 - >> Analyse de la qualité de circulation
 - >> Analyse dynamique multidimensionnelle

Analyse des performances

Procédure selon la demande

- ▶ Déterminer la demande
 - >> Trafic déterminant TD au seuil de planification
- ▶ Choix d'un niveau de service pour le dimensionnement
 - **▶ Discussion M.O. Projeteur**
 - >> Recommandations AASHTO SN
 - >> Capacité LOS E
- **▶** Dimensions et nature du trafic

Procédure selon la demande

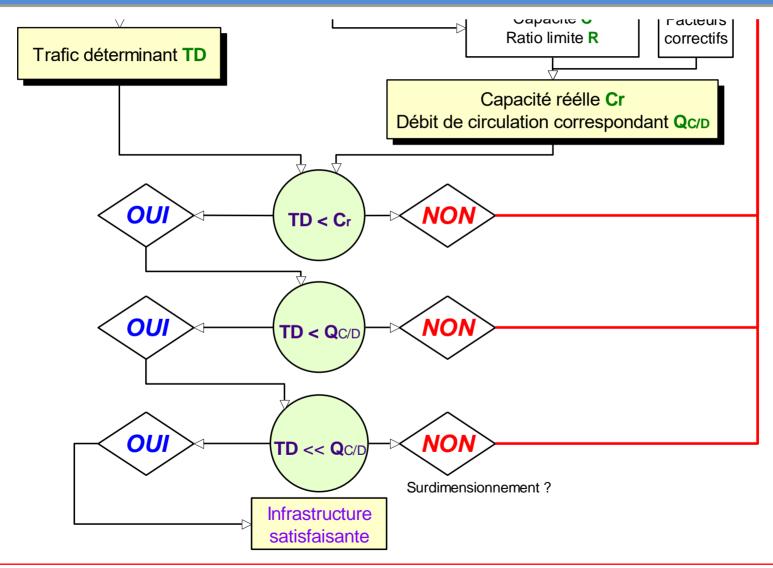

▶ Calcul de l'offre

>> Capacité

- C_{R}
- ☐ Limite physique de l'écoulement du trafic
- >> Débit admissible

- $Q_C \mid Q_D$
- □ Débit assurant un confort de circulation suffisant
- **▶** Comparaison Offre Demande
 - **→** 3 critères comparatifs

Le bilan de capacité


Choix d'un niveau de service

▶ Recommandations AAHSTO / SN

Type de route	Terrain	Zone rurale	Zone urbaine / périurbaine	
	Plaine	В	С	
Autoroute / RGD	Vallonné	В	С	
Freeway	Montagne	С	С	
	Suisse	С	D	
	Plaine	В	С	
RP	Vallonné	В	С	
Arterial	Montagne	С	С	
	Suisse	С	D	
	Plaine	С	D	
RL / RD	Vallonné	С	D	
Collector	Montagne	D	D	
	Suisse	D	D	
	Plaine	D	D	
RD	Vallonné	D	D	
Local	Montagne	D	D	
	Suisse	Pas de vérification nécessaire		

de circulation - Automne 2024

Le bilan de capacité

de circulation - Automne 2024

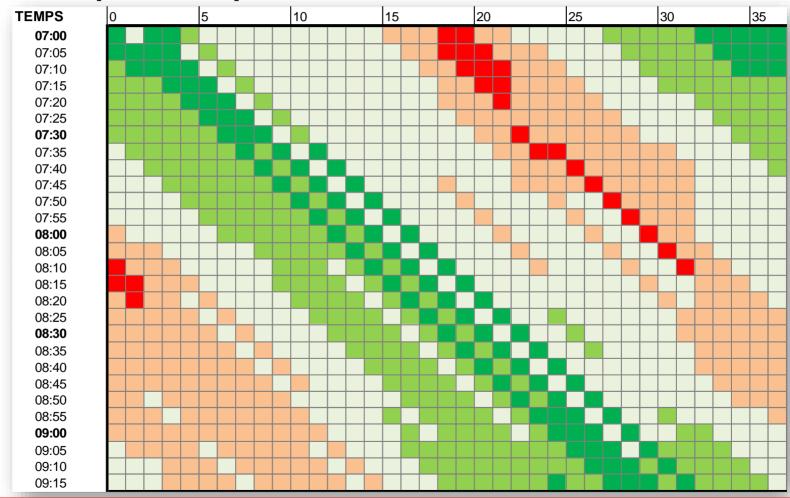
Comparaison de l'offre et de la demande

$$\rightarrow TD < C_r$$

- ightharpoonup TD doit toujours être inférieur à C_r
- >> Si ceci n'est pas réalisé, limite physique de l'écoulement dépassé
 - ritération(s) afin de modifier la géométrie
 - □ Nombre de voies
 - □ Déclivités 🔌
 - □ Obstacles latéraux
 - □ Dépassement

Comparaison de l'offre et de la demande

- ► TD < Q_C ou Q_D
 - ightharpoonup TD ne doit pas être supérieur à Q_C/Q_D
 - >> la gêne tolérable doit être évaluée de cas en cas
 - ⇒ si ceci n'est pas réalisé


 itération(s)

Comparaison de l'offre et de la demande

- $ightharpoonup TD ext{<<} QC ext{ ou } Q_D$
 - >> Il s'agit de vérifier si la route n'est pas surdimensionnée
 - □ N = 1 au minimum ©
 - >> Itération possible ou acceptation

Analyse des performances

▶ Variabilité spatio-temporelle

MERCI POUR VOTRE ATTENTION

